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Stokes flow through a twisted tube
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Pressure-driven flow through a tube with helical corrugations produced either by
twisting a straight tube with arbitrary cross-section, or by embossing helical corruga-
tions on a circular tube, or by inserting a helical fin inside a circular tube, is considered.
The Stokes-flow problem is formulated in non-orthogonal curvilinear helical coordi-
nates defined with respect to the helical pitch and azimuthal wavenumber, where
the latter is determined by the tube cross-section rotational symmetry. In the first
part of the paper, a perturbation analysis is carried out for a circular tube with
small-amplitude sinusoidal corrugations, and the solutions of the first- and second-
order perturbation problems are found by analytical methods. In the second part,
an asymptotic analysis is performed for large-pitched helical corrugations and tubes
with arbitrary cross-section, and the solutions of the zeroth-, first- and second-
order problems are computed by finite-element methods for unidirectional and two-
dimensional Stokes flow over the cross-sectional plane normal to the tube axis. The
results illustrate the kinematic structure of the flow and demonstrate the dependence
of the flow rate on the tube geometry.

1. Introduction
The practical desire to enhance heat transport and fluid mixing in a passive flow

environment has motivated the design of pipes and tubes with internal partitions,
fins, ridges and ribs (e.g. Garimella & Christensen 1995a, b). These obstructions are
meant to disturb the otherwise rectilinear streamlines of the pipe flow and induce
a rotational motion that promotes mixing and induces convective scalar transport.
Applications can be found in high- and low-speed heat exchangers and in processing
equipment encountered in the chemical and food industry. For example, the Kenics
static mixer is assembled by inserting an array of helical segments into a circular
tube (e.g. Galaktionov et al. 2001). Though such designs can lead to significant
improvement in performance, side-effects and some practical concerns may occur. A
poor construction may cause clogging and the onset of regions of recirculating flow
that have an adverse effect on the transport rates. From a practical standpoint, the
geometries may be hard to produce on a great variety of scales, especially on the
small scale of microfluidics.

A generalized concept considers tubes with helical corrugations produced either
by twisting a straight tube with a non-circular cross-section, or by embossing helical
corrugations on a circular tube, as shown in figure 1. A circular tube with a helical
internal fin falls into this category (figure 1e). Although flows through such tubes
have been investigated in the laboratory, mainly with reference to enhanced heat
transfer at high Reynolds numbers (e.g. Withers & Habdas 1974; Rainieri, Farina
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Figure 1. A periodically twisted tube with (a) arbitrary cross-section (n = 1); (b) square
cross-section (n = 4); (c, d) circular cross-section with sinusoidal corrugations (n = 1 snake-like,
and 5); (e) circular cross-section with a triangular indentation yielding an internal helical fin
(n = 1); ( f–h) circular contour with square indentations (n = 1, 2 and 5). The outside surface
of the tube shown in ( f) describes a single-screw extruder, and the outside surface of the tube
shown in (g) describes a drill bit.
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& Pagliarini 1996), a detailed hydrodynamic analysis is not available. A notable
exception is Wang (2006) who carried out a perturbation analysis for twisted circular
tubes with small-amplitude sinusoidal corrugations at low Reynolds numbers. His
results demonstrate that there is an optimal pitch where the bulk rotation of the fluid
in the core of the tube becomes maximum, optimizing laminar mixing.

Flow through twisted tubes should be distinguished from flow through spirally
coiled tubes with a uniform cross-section whose centreline forms a helix. Such tubes
are used in the nuclear and mechanical engineering industries for applications relating
to heat exchange. The advantage of the coiled shape is that it offers a large transport
surface area in a compact design, while allowing for a narrow distribution of residence
times. The main hydrodynamic feature of flow through these curved tubes is the
onset of secondary flow over the cross-section identified by Eustice (1910, 1911)
and first analysed by Dean (1927, 1928), as reviewed by Berger, Talbot & Yao
(1983) and Rennie (2004). Wang (1981) formulated the problem in centreline, normal
and binormal coordinates and demonstrated the leading-order effect of the helical
curvature and torsion for tubes with small cross-sectional shape – see also Germano
(1982, 1989), Tuttle (1990) and Xie (1900). Numerical studies addressing the effect
of torsion were performed by several authors (e.g. Liu & Masliyah 1993; Hüttl &
Friedrich 2001). Notable is the work of Wang & Andrews (1995) who formulated the
governing equations of Navier–Stokes flow in global helical coordinates and presented
a comprehensive numerical study of the hydrodynamics for tubes with rectangular
cross-sectional shape.

Flow through twisted and helical tubes falls in a more general category of flows
with helical streamlines. Another member of this family is flow through an industrial
single-screw extruder used in polymer and food processing. Several non-orthogonal
helical coordinate systems have been proposed to study such flows, as reviewed by
Yu & Hu (1997), and an appropriate choice must be made depending on the specific
geometry of the problem under consideration. For example, the system of helical
coordinates employed by Wang & Andrews (1995) is appropriate for flow through
small-pitched coiled tubes. On the other hand, the system of helical coordinates
developed by Tung & Laurence (1975) is appropriate for flow through long-pitched
coiled tubes, single-screw extruders, and flow through twisted tubes with arbitrary
cross-section presently considered.

In § 2, the problem is formulated for arbitrary cross-sectional shapes. In § 3, the
chosen system of helical coordinates is introduced and the governing equations of
Stokes flow are presented in these non-orthogonal curvilinear coordinates. In § 4, a
perturbation analysis for flow through a twisted circular tube with small-amplitude
sinusoidal corrugations is presented, and the results are confirmed to coincide with
those of Wang (2006) who used an alternative formulation in polar cylindrical co-
ordinates. In addition, flow visualization and streamlines are displayed and discussed.
In § 5, an asymptotic expansion for large-pitched tubes with arbitrary cross-section is
performed, and numerical solutions up to the second order are presented using finite-
element methods for unidirectional and two-dimensional Stokes flow. Comparison of
the asymptotic analysis with the perturbation analysis for a nearly circular tube will
suggest that the large-pitch solution is accurate even for moderate wavenumbers.

2. Problem statement
We consider Stokes flow through a helically corrugated tube that arises by twisting

a straight tube with arbitrary cross-section around its axis over the length of the



264 C. Pozrikidis

pitch, L. A point on the surface of the tube may be identified by its polar cylindrical
coordinates, (x, σ, ϕ), where the axial position, x, and meridional angle, ϕ, are regarded
as independent variables. The distance from the tube centre is given by

σ = Σ(nϕ − kx), (2.1)

where Σ(w) is a shape function with period 2π, the integer n is the meridional
wavenumber for a tube with n-fold rotational cross-sectional symmetry, and the
real number k is the axial wavenumber corresponding to the axial wave length or
pitch, L = 2π/k. The helical geometry arises by twisting the tube cross-section at a
particular location by an angle that depends linearly on the axial distance, x. Note
that the tube cross-sectional geometries at x and x + L are identical.

A twisted tube with arbitrary cross-section corresponding to n = 1 is illustrated
in figure 1(a). A twisted tube with a square cross-section corresponding to n = 4 is
illustrated in figure 1(b); the shape function in this case is

Σ(w) =

⎧⎪⎨
⎪⎩

a

cos(w/4)
if 0 < w < π,

a

sin(w/4)
if π < w < 2π,

(2.2)

where a is half the tube side length. The shape function of a circular tube with
sinusoidal corrugations is

Σ(w) = a + b cosw, (2.3)

where a is the mean tube radius and b is the amplitude of the corrugations
(figure 1c, d). Other geometries arise by replacing the sinusoidal wave with a triangular
or square wave, as shown in figure 1(e–h). For example, the shape function of a circular
tube with square corrugations shown in figure 1(f –g) is

Σ(w) =

{
a + b if |w| < ϕ0,

a − b if otherwise,
(2.4)

where ϕ0 is a specified angle, and a, b are specified dimensions defining the inner and
outer tube diameters. Matlab scripts that produce these shapes are available from the
author on request.

3. Helical coordinates
A point inside the tube can be identified by the non-orthogonal helical curvilinear

coordinates (σ̂ , ϕ̂, x̂), (figure 2). These are related to the cylindrical polar coordinates
by

σ = σ̂ , ϕ = ϕ̂ + αx̂, x = x̂, (3.1)

and to the Cartesian coordinates by

x = x̂, y = σ̂ cos(ϕ̂ + αx̂), z = σ̂ sin(ϕ̂ + αx̂), (3.2)

where α ≡ k/n = 2π/(nL). The range of variation of the helical coordinates inside
the tube over the length of one pitch is

0 < σ̂ < Σ(nϕ̂), 0 < ϕ̂ < 2π, 0 < x̂ < L. (3.3)

Lines of constant ϕ̂ on the tube surface correspond to a constant tube radius, σ̂ , as
illustrated in figure 1.
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Figure 2. Definition of helical coordinates, (x̂, σ̂ , ϕ̂), in relation to the global Cartesian
coordinates and polar cylindrical coordinates, (x, σ, ϕ).

The helical coordinates (σ̂ , ϕ̂, x̂) defined above should be distinguished from the
alternative helical coordinates (σ̃ , ϕ̃, x̃) used by previous authors in the study of flow
through a tube with a helical centreline and a circular or square cross-section (e.g.
Wang & Andrews 1995; Manoussaki & Chadwick 2000), defined such that

σ = σ̃ , ϕ = ϕ̃, x = x̃ +
1

α
ϕ̃, (3.4)

and

x = x̃ +
1

α
ϕ̃, y = σ̃ cos ϕ̃, z = σ̃ sin ϕ̃. (3.5)

These alternative helical coordinates are not suitable for helically twisted tubes that
enclose the axis of revolution.

The covariant metric tensor of the chosen helical coordinates is

gij =
∂x
∂ξ i

· ∂x
∂ξ j

=

⎡
⎣1 0 0

0 σ̂ 2 ασ̂ 2

0 ασ̂ 2 1 + α2σ̂ 2

⎤
⎦ , (3.6)

where ξ 1 = σ̂ , ξ 2 = ϕ̂ and ξ 3 = x̂. The contravariant metric tensor is the inverse of
the covariant tensor,

gij =

⎡
⎢⎢⎣

1 0 0

0
1

σ̂ 2
+ α2 −α

0 −α 1

⎤
⎥⎥⎦ . (3.7)

A mean pressure gradient along the tube axis drives a three-dimensional pressure-
driven flow. The fluid velocity can be resolved into components corresponding to the
helical coordinates (σ̂ , ϕ̂, x̂),

u = uσ̂ eσ̂ + uϕ̂eϕ̂ + ux̂ex̂ , (3.8)

where

eσ̂ =
1

√
g11

(
∂x
∂σ̂

)
x̂,ϕ̂

, eϕ̂ =
1

√
g22

(
∂x
∂ϕ̂

)
x̂,σ̂

, ex̂ =
1

√
g33

(
∂x
∂x̂

)
σ̂ ,ϕ̂

, (3.9)
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are position-dependent unit vectors. The cylindrical polar velocity components are
related to the helical velocity components by

uσ = uσ̂ , uϕ = uϕ̂ +
ασ̂√

1 + α2σ̂ 2
ux̂ = uϕ̂ + ασ̂ux, (3.10a, b)

ux =
1√

1 + α2σ̂ 2
ux̂. (3.10c)

A key observation is that, if the flow is helically symmetric along the entire length of
the tube, these velocity components are independent of x̂, and only depend on σ̂ and
ϕ̂. Moreover, since the flow is assumed to be fully developed, the axial derivative of
the pressure is a constant,

−
(

∂p

∂x̂

)
σ̂ ,ϕ̂

≡ G, (3.11)

where G is the negative of the streamwise pressure gradient.
The contravariant velocity components corresponding to the helical coordinates are

given by

v1 =
uσ̂√
g11

= uσ̂ , v2 =
uϕ̂√
g22

=
uϕ̂

σ̂
, v3 =

ux̂√
g33

=
ux̂√

1 + α2σ̂ 2
= ux, (3.12)

where ux is the velocity component along the tube axis. Like the physical components,
the contravariant components are independent of x̂, and only depend on σ̂ and ϕ̂.
The flow rate through a plane that is normal to the x-axis is given by

Q =

∫ 2π

0

∫ Σ(nϕ̂)

0

uxσ̂ dσ̂ dϕ̂. (3.13)

The continuity equation for an incompressible fluid, ∇ · u = 0, requires

∂vi

∂ξ i
+

{
i

j i

}
vj = 0, (3.14)

and the Stokes equation, ∇p = µ∇2u requires

gij ∂p

∂ξj
= µgkjvi

,jk, (3.15)

where µ is the fluid viscosity, and

vi
,jk =

∂2vi

∂ξ k∂ξ j
+

{
i

j l

}
∂vl

∂ξ k
+

{
i

l k

}
∂vl

∂ξ j
−

{
l

j k

}
∂vi

∂ξ l

+

(
∂

∂ξk

{
i

j l

}
+

{
i

m k

}{
m

j l

}
−

{
m

j k

}{
i

m l

})
vl (3.16)

is the covariant second derivative (Wang 1981). The curly brackets signify the
Christoffel symbol of the second kind defined as{

i

j k

}
≡ gil[jk, l] =

∂ξ i

∂xl

∂

∂ξ j

(
∂xl

∂ξ k

)
, (3.17)

where xi are the Cartesian coordinates, and

[jk, l] =
1

2

(
∂glj

∂ξ k
+

∂glk

∂ξ j
− ∂gjk

∂ξ l

)
(3.18)
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is the Christoffel symbol of the first kind (Aris 1962). Substituting the aforementioned
expressions, we find that the only non-zero Christoffel symbols of the second kind
are (Tung & Laurence 1975){

2
2 1

}
=

1

σ̂
,

{
2

3 1

}
=

α

σ̂
,{

1
2 2

}
= −σ̂ ,

{
1

3 2

}
= −ασ̂ ,

{
2

1 2

}
=

1

σ̂
,{

1
2 3

}
= −ασ̂ ,

{
1

3 3

}
= −α2σ̂ ,

{
2

1 3

}
=

α

σ̂
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.19)

Substituting these expressions into the continuity equation and setting the derivative
with respect to ξ 3 equal to zero, we find

∂uσ̂

∂σ̂
+

∂

∂ϕ̂

(
uϕ̂

σ̂

)
+

{
2

1 2

}
u ˆ̂σ =

1

σ̂

(
∂(σ̂ uσ̂ )

∂σ̂
+

∂uϕ̂

∂ϕ̂

)
= 0, (3.20)

which is the usual continuity equation in a plane normal to the x-axis corresponding
to a fixed value of x̂. Thus, the two-dimensional velocity field comprised of the
helical velocity components in a plane normal to the x-axis is solenoidal and may be
described in terms of a streamfunction. It is instructive to re-derive this expression
departing from the continuity equation in cylindrical polar coordinates,

1

σ

∂(σuσ )

∂σ
+

∂

∂ϕ

(
uϕ

σ

)
+

∂ux

∂x
= 0. (3.21)

Using (3.10c), we find

1

σ

∂(σuσ̂ )

∂σ
+

∂

∂ϕ

(
uϕ̂ + ασ̂ux

σ

)
+

∂ux

∂x
= 0. (3.22)

Since ux depends only on ϕ̂ = ϕ − αx,

∂ux

∂ϕ
=

∂ux

∂ϕ̂
,

∂ux

∂x
= −α

∂ux

∂ϕ̂
. (3.23)

Substituting these expressions into (3.22), we recover precisely (3.20).
The σ̂ component of the Stokes equation reduces to

1

µ

∂p

∂σ̂
=

∂

∂σ̂

(
1

σ̂

∂

∂σ̂
(σ̂ uσ̂ )

)
+

1

σ̂ 2

∂2uσ̂

∂ϕ̂2
− 2

σ̂ 2

∂uϕ̂

∂ϕ̂
+ αFσ̂ , (3.24)

where

Fσ̂ ≡ α
∂2uσ̂

∂ϕ̂2
− 2

σ̂

∂ux

∂ϕ̂
, (3.25)

the ϕ̂ component reduces to

1

µ

1

σ̂

∂p

∂ϕ̂
=

∂

∂σ̂

(
1

σ̂

∂

∂σ̂
(σ̂ uϕ̂)

)
+

1

σ̂ 2

∂2uϕ̂

∂ϕ̂2
+

2

σ̂ 2

∂uσ̂

∂ϕ̂
+ αFϕ̂, (3.26)

where

Fϕ̂ = α
∂2uϕ̂

∂ϕ̂2
+ 2

∂ux

∂σ̂
− 1

µ
σ̂

(
G + α

∂p

∂ϕ̂

)
, (3.27)
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and the x̂ component of the Stokes equation reduces to

−G

µ
=

1

σ̂

∂

∂σ̂

(
σ̂

∂ux

∂σ̂

)
+

1

σ̂ 2

∂2ux

∂ϕ̂2
+ αFx̂, (3.28)

where

Fx̂ ≡ α
∂2ux

∂ϕ̂2
+

1

µ

∂p

∂ϕ̂
(3.29)

(Tung & Laurence 1975). A simple way to derive these equations is by transforming
the Stokes equations in polar cylindrical coordinates using (3.10) and the chain rule.
In the case of a straight tube, α = 0, we recover the Stokes equations written in
cylindrical polar coordinates. In Stokes flow, the pressure is a harmonic function,
∇2p = 0. In light of the helical symmetry, the covariant components of the pressure
gradient are given by

q1 =
∂p

∂σ̂
, q2 =

∂p

∂ϕ̂
, q3 =

∂p

∂x̂
= −G. (3.30)

The contravariant components arise from the relation qi = gijqj ,

q1 = q1, q2 =

(
1

σ̂ 2
+ α2

)
q2 + αG, q3 = −αq2 − G. (3.31)

Laplace’s equation for in general non-orthogonal curvilinear coordinates reads

∇2p =
1

√
g

∂

∂vi
(
√

gqi) = 0, (3.32)

where g is the determinant of the covariant matrix tensor. In our case, g = σ̂ 2, the
term involving derivatives with respect to x̂ is zero, and we find

1

σ̂

∂(σ̂ q1)

∂σ̂
+

∂q2

∂ϕ̂
=

1

σ̂

∂

∂σ̂

(
σ̂

∂p

∂σ̂

)
+

(
1

σ̂ 2
+ α2

)
∂2p

∂ϕ̂2
= 0, (3.33)

which shows that the pressure distribution in an axial plane is harmonic only when
α = 0.

In the case of flow through a circular tube, the governing equations are satisfied by
the Poiseuille flow profile for any value of α, yielding

uσ̂ = 0, uϕ̂ = −ασ̂
G

4µ
(a2 − σ̂ 2),

ux =
G

4µ
(a2 − σ̂ 2), p = −Gx̂ + P0,

⎫⎪⎪⎬
⎪⎪⎭ (3.34)

where P0 is an inconsequential constant. In this case, there is no advantage to using
helical coordinates in place of the natural cylindrical polar coordinates.

4. Small-amplitude sinusoidal corrugations around the circular shape
Consider flow through a circular tube of radius a with small-amplitude sinusoidal

corrugations described by the shape function

Σ(w) = a(1 + ε cos w), (4.1)

where ε is a dimensionless number that is much smaller than unity. This flow was
studied recently by Wang (2006) using a formulation in polar cylindrical coordinates.
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In the helical coordinates employed here, the velocity and pressure fields may be
expanded in the perturbation series

uσ̂ = εu
(1)
σ̂ + ε2u

(2)
σ̂ + · · · ,

uϕ̂ = −ασ̂
G

4µ
(a2 − σ̂ 2) + εu

(1)
ϕ̂ + ε2u

(2)
ϕ̂ + · · · ,

ux =
G

4µ
(a2 − σ̂ 2) + εu(1)

x + ε2u(2)
x + · · · ,

p = −Gx̂ + εp(1) + ε2p(2) + · · · .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.2)

Note that the zeroth-order component of uϕ̂ is non-zero according to (3.10). The
no-slip and no-penetration boundary conditions require that the velocity components
uσ̂ , uϕ̂ , and ux are all zero around the tube surface located at

σ̂ = a(1 + ε cos(nϕ̂)). (4.3)

Substituting the perturbation expansions and linearizing, we derive the boundary
conditions

u
(1)
σ̂ (σ̂ = a) = 0, u

(1)
ϕ̂ (σ̂ = a) = −α

Ga3

2µ
cos(nϕ̂),

u(1)
x (σ̂ = a) =

Ga2

2µ
cos(nϕ̂).

⎫⎪⎪⎬
⎪⎪⎭ (4.4)

Motivated by these functional forms, we write

u
(1)
σ̂ = Uσ̂ (σ̂ ) sin(nϕ̂), u

(1)
ϕ̂ = Uϕ̂(σ̂ ) cos(nϕ̂),

u(1)
x = Ux(σ̂ ) cos(nϕ̂), p(1) = P (σ̂ ) sin(nϕ̂).

}
(4.5)

The boundary conditions at the tube surface require

Uσ̂ (a) = 0, Uϕ̂(a) = −α
Ga3

2µ
, Ux(a) =

Ga2

2µ
, (4.6)

and the regularity condition at the centreline requires Uσ̂ (0) = 0 and Uϕ̂(0) = 0.
Substituting these expressions in the continuity equation (3.20), we find

d(σ̂Uσ̂ )

dσ̂
− nUϕ̂ = 0. (4.7)

Substituting the expression for the pressure in (3.33), we derive the ordinary differential
equation

D2〈P 〉 = 0, (4.8)

where

D2 ≡ 1

σ̂

d

dσ̂

(
σ̂

d

dσ̂

)
−

(
n2

σ 2
+ k2

)
(4.9)

is the modified Bessel operator. Substituting further these expressions into the three
components of the Stokes equation, (3.24), (3.26) and (3.28), we find

D̃2〈Uσ̂ 〉 +
2n

σ̂ 2
Uϕ̂ +

2k

σ̂
Ux =

1

µ

dP

dσ̂
, (4.10)

D̃2〈Uϕ̂〉 +
2n

σ̂ 2
Uσ̂ + 2α

dUx

dσ̂
=

1 + α2σ 2

µσ̂
nP, (4.11)

D2〈Ux〉 = − k

µ
P, (4.12)



270 C. Pozrikidis

where

D̃2 ≡ D2 − 1

σ̂ 2
=

1

σ̂

d

dσ̂

(
σ̂

d

dσ̂

)
−

(
n2 + 1

σ 2
+ k2

)
. (4.13)

The admissible regular solution of (4.8) is

P = −Ga

4
AIn(kσ̂ ), (4.14)

where In is a modified Bessel function, and A is a dimensionless constant. Substituting
this expression into (4.12), we find

D2〈Ux〉 =
Gka

4µ
AIn(kσ̂ ). (4.15)

The solution is given by

Ux =
Ga2

4µ

[
BIn(kσ̂ ) +

A

ka
F(kσ̂ )

]
, (4.16)

where B is a new dimensionless constant, and the function F(R) satisfies the
inhomogeneous Bessel equation

1

R

d

dR

(
R

dF
dR

)
−

(
n2

R2
+ 1

)
F = In(R). (4.17)

A particular solution of (4.17) is F = 1
2
RIn+1(R). Substituting this expression into

(4.16), we find

Ux =
Ga2

4µ

[
BIn(kσ̂ ) + A

σ̂

2a
In+1(kσ̂ )

]
. (4.18)

Solving (4.7) for Uϕ̂ and substituting the result into (4.10), we find

D̃2〈Uσ̂ 〉 +
2

σ̂ 2

d(σ̂ Ûσ̂ )

dσ̂
= −2k

σ̂
Ux +

1

µ

dP

dσ̂
. (4.19)

Substituting the preceding expressions and simplifying, we derive the ordinary
differential equation

d2Uσ̂

dσ̂ 2
+

3

σ̂

dUσ̂

dσ̂
−

(
n2 − 1

σ̂ 2
+ k2

)
Uσ̂ =

1

σ̂
D2〈σ̂Uσ̂ 〉

= −Ga k

4µ

[
(2kaB + An)

In(kσ̂ )

kσ̂
+ 2AIn+1(kσ̂ )

]
. (4.20)

The solution is

Uσ̂ =
Ga2

4µ

[
C

In(kσ̂ )

kσ̂
− 2kaB + An

2ka
In+1(kσ̂ ) − 2A

ka

1

kσ̂
G(kσ̂ )

]
, (4.21)

where C is a new dimensionless constant, and the function G(R) satisfies the differen-
tial equation

1

R

d

dR

(
R

dG
dR

)
−

(
n2

R2
+ 1

)
G = RIn+1(R). (4.22)

A solution of (4.22) is

G = 1
4
R[RIn(R) − 2(n + 1)In+1(R)]. (4.23)
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Substituting (4.23) into (4.21), we find

Uσ̂ =
Ga2

4µ

[
C

In(kσ̂ )

kσ̂
− BIn+1(kσ̂ ) − A

2ka
(kσ̂ In(kσ̂ ) − (n + 2)In+1(kσ̂ ))

]
. (4.24)

Once again using (4.7), we find

Uϕ̂ =
1

n

d(σ̂Uσ̂ )

dσ̂
=

Ga2

4µ

[
C

(
In(kσ̂ )

kσ̂
+

In+1(kσ̂ )

n

)

− B(ασ̂ In(kσ̂ ) − In+1(kσ̂ )) − A

2ka

(
n + 2 +

k2σ̂ 2

n

)
In+1(kσ̂ )

]
. (4.25)

The physical meridional velocity component is given by

Uϕ = Uϕ̂ + ασ̂Ux

=
Ga2

4µ

[
C

(
In(kσ̂ )

kσ̂
+

In+1(kσ̂ )

n

)
+ BIn+1(kσ̂ ) − A

2ka
(n + 2)In+1(kσ̂ )

]
. (4.26)

The boundary condition Ux(a) = Ga2/(2µ) requires

2 BIn(ka) + AIn+1(ka) = 4, (4.27)

the boundary condition Uσ̂ (a) = 0 requires

CIn(ka) − BkaIn+1(ka) − 1
2
A

(
kaIn(ka) − (n + 2)In+1(ka)

)
= 0, (4.28)

and the boundary condition Uϕ̂(a) = −αGa3/(2µ) or Uϕ = 0 requires

C2
(
In(ka) + αaIn+1(ka)

)
+ B2kaIn+1(ka) − A(n + 2)In+1(ka) = 0. (4.29)

The last three equations provide us with a linear system for the determination of the
three dimensionless coefficients, A, B and C.

Figure 3(a) shows the first-order velocity vector field in a plane normal to the x-axis
for n = 3 and ka = π. The dotted line represents the actual tube contour for ε = 0.05.
Note that, because of the helical symmetry, the displayed vector field is rotated as a
whole along the tube axis at a rate that is determined by the pitch. Figure 3(b) shows
coiled and spiralling streamlines for ε = 0.1, generated by integrating the zeroth-
and first-order velocity vector fields. The coiled streamlines exhibit a periodicity that
allows them to explore a large part of the tube cross-section and thereby enhance
laminar mixing.

The second-order perturbation velocity and pressure fields consist of a periodic
sinusoidal component with respect to ϕ̂, and a mean component that is independent
of ϕ̂, given by

Uσ̂ (σ̂ ) =
1

2π

∫ 2π

0

u
(2)
σ̂ dϕ̂, Uϕ̂(σ̂ ) =

1

2π

∫ 2π

0

u
(2)
ϕ̂ dϕ̂,

Ux(σ̂ ) =
1

2π

∫ 2π

0

u(2)
x dϕ̂, P =

1

2π

∫ 2π

0

p(2)dϕ̂.

⎫⎪⎪⎬
⎪⎪⎭ (4.30)

Integrating the continuity equation (3.20) with respect to ϕ̂, and repeating for the
three components of the Stokes equation (3.24), (3.26), (3.28), and the pressure
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Figure 3. (a) Velocity vector field in a cross-sectional plane for n = 3 and ka = π. The dotted
line represents the actual tube contour for ε = 0.05. (b) Coiled and spiralling streamlines for
ε = 0.1, as predicted by the first-order analysis.

equation (4.14), we find

1

σ̂

d(σ̂Uσ̂ )

∂σ̂
= 0,

1

µ

dP
dσ̂

=
d

dσ̂

(
1

σ̂

d

dσ̂
(σ̂Uσ̂ )

)
,

d

dσ̂

(
1

σ̂

d

dσ̂
(σ̂Uϕ̂)

)
+ 2α

dUx

dσ̂
= 0,

1

σ̂

d

dσ̂

(
σ̂

dUx

dσ̂

)
= 0,

1

σ̂

d

∂σ̂

(
σ̂

dP
dσ̂

)
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.31)

The boundary conditions are

(Uσ̂ )σ̂=a = 0,

(Uϕ̂)σ̂=a = −1

2

[
3α

Ga3

4µ
+ a

(
dUϕ̂

dσ

)
σ̂=a

]
,

(Ux)σ̂=a =
1

2

[
Ga2

4µ
− a

(
dUx

dσ

)
σ̂=a

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.32)

The solution of the second-order problem is readily found to be

Uσ̂ (σ̂ ) = 0, Uϕ̂(σ̂ ) = (Uϕ̂)σ̂=a

σ̂

a
, Ux(σ̂ ) = (Ux)σ̂=a. (4.33)

The physical azimuthal velocity component is given by

Uφ(σ̂ ) = Uϕ̂(σ̂ ) + ασ̂Ux(σ̂ ) = Ωσ̂, (4.34)

where

Ω =
1

a
Uϕ̂(σ̂ = a) + αUx(σ̂ = a) (4.35)

is the angular velocity of rotation around the tube axis. The total flow rate through
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Figure 4. (a) Reduced angular velocity, w ≡ 4µΩ/(Ga), and (b) perturbation flow rate
coefficient q , plotted as functions of n and ka.

a plane that is normal to the x-axis is given by

Q =

∫ 2π

0

∫ a(1+ε cos(nϕ̂))

0

uxσ̂ dσ̂ dϕ̂

=

∫ 2π

0

∫ a(1+ε cos(nϕ̂))

0

[
G

4µ
(a2 − σ̂ 2) + εUx(σ̂ ) cos(nϕ̂) + ε2u(2)

x + · · ·
]
σ̂ dσ̂ dϕ̂

=
Gπa4

8µ
[1 − ε2q + · · ·], (4.36)

where

q =
4µ

Ga

(
dUx

dσ

)
σ̂=a

− 3 (4.37)

is the second-order fractional decrease in the flow rate.
Figure 4(a) shows a graph of the dimensionless angular velocity, w ≡ 4µΩ/(Ga),

plotted as a function of n and ka. As ka → 0, w � ka, independent of n, and as
ka → ∞, w � 3n/(2ka). Wang (2006) noted that, for a specified value of n, the angular
velocity reaches a maximum at a certain value of ka representing the optimal pitch
for fluid rotation around the tube axis.

Figure 4(b) shows a graph of the flow rate coefficient q , plotted as a function of n

and ka. As ka → 0, q � 2n − 3 + O(k2a2), where the leading-order term expresses the
effect of the sinusoidal corrugations in unidirectional flow. Thus, the first correction
to the flow rate is quadratic with respect to the reduced wavenumber, ka. On the
other hand, as ka → ∞, q � 4ka − 3, independent of n. Wang (2006) observed that q

may obtain negative values when n = 1 for small values of ka, which means that the
corrugations may actually reduce the energy required to drive the flow. Physically, the
effective increase in the tube cross-sectional area overcompensates for the elevated
drag due to the increased surface area.

5. Large pitch
Consider flow through a helically corrugated tube with arbitrary cross-section, in

the limit as the dimensionless parameter,

β ≡ αa =
ka

n
=

2π

n

a

L
(5.1)
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is small, where a is the typical cross-sectional tube size. The velocity and pressure
fields may be expanded in the perturbation series

uσ̂ = βu
(1)
σ̂ + β2u

(2)
σ̂ + · · · ,

uϕ̂ = βu
(1)
ϕ̂ + β2u

(2)
ϕ̂ + · · · ,

ux = u(0)
x + βu(1)

x + β2u(2)
x + · · · ,

p = p(0) + βp(1) + β2p(2) + · · · .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.2)

Using (3.10b), we find that the physical azimuthal velocity component is given by the
perturbation expansion

uϕ = uϕ̂ + β
σ̂

a
ux = β

(
u

(1)
ϕ̂ +

σ̂

a
u(0)

x

)
+ β2

(
u

(2)
ϕ̂ +

σ̂

a
u(1)

x

)
+ · · · . (5.3)

All velocities are required to be zero around the tube contour. In the case of a
circular tube, and only then, the only non-zero perturbation field is u

(1)
ϕ̂ = −(σ̂ /a)u(0)

x .
Substituting the preceding expressions in the governing equations (3.24), (3.26) and
(3.28), we derive a sequence of problems.

The zero-order axial velocity field satisfies the equations of unidirectional tube flow
with a linear pressure field, p(0) = −Gx̂,

∇̂2u(0)
x = −G

µ
, (5.4)

where ∇̂2 = ∂2/∂ŷ2 + ∂2/∂ẑ2 is the Laplacian in the (ŷ, ẑ)-plane defined such that
ŷ = σ̂ cos ϕ̂ and ẑ = σ̂ sin ϕ̂. A finite-element method with quadratic six-node triangular
elements with curved edges was implemented for solving the Poisson equation (5.4)
(e.g. Pozrikidis 2005). Sample results for a circular tube with n= 3 sinusoidal corruga-
tions of amplitude b/a = 0.2 computed with 1024 elements, for a square tube com-
puted with 512 elements, and for a circular tube with a helical internal partition
computed with 1024 elements, are shown in figure 5.

The first-order field satisfies the equations

1

µ

∂p(1)

∂σ̂
=

∂

∂σ̂

(
1

σ̂

∂

∂σ̂

(
σ̂ u

(1)
σ̂

))
+

1

σ̂ 2

∂2u
(1)
σ̂

∂ϕ̂2
− 2

σ̂ 2

∂u
(1)
ϕ̂

∂ϕ̂
− 2

aσ̂

∂u(0)
x

∂ϕ̂
, (5.5)

1

µ

1

σ̂

∂p(1)

∂ϕ̂
=

∂

∂σ̂

(
1

σ̂

∂

∂σ̂

(
σ̂ u

(1)
ϕ̂

))
+

1

σ̂ 2

∂2u
(1)
ϕ̂

∂ϕ̂2
+

2

σ̂ 2

∂u
(1)
σ̂

∂ϕ̂
+

2

a

∂u(0)
x

∂σ̂
− σ̂G

µa
, (5.6)

∇̂2u(1)
x = 0, (5.7)

complemented by the continuity equation

1

σ̂

(
∂
(
σ̂ u

(1)
σ̂

)
∂σ̂

+
∂u

(1)
ϕ̂

∂ϕ̂

)
= 0. (5.8)

The solution of (5.7) is u(1)
x = 0, which shows that the first-order velocity contributes

neither to the axial flow nor to the axial flow rate. This result is consistent with the
asymptotic analysis undertaken in § 4. In Cartesian coordinates, (ŷ, ẑ), equations (5.5)
and (5.6) describing the flow in a transverse plane combine into the forced Stokes
equation

∇̂p(1) = µ∇̂2û(1) + b, (5.9)
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Figure 5. (a, b) Unidirectional flow through a circular tube with n = 3 sinusoidal corrugations
of amplitude b/a = 0.2, computed by a finite-element method. (a) Axial velocity field, ux , and
(b) illustration of the magnitude of the velocity gradient, |∇ux |. Corresponding results for (c, d)
a tube with a square cross-section, and (e, f ) a circular tube with a helical internal partition
whose edge length is equal to half the tube radius.

where

b = µex × 2

a
∇̂u(0)

x − σ̂G

a
eϕ̂ , (5.10)

is the body force, ex is the unit vector along the x-axis, eϕ̂ = (−ẑ/σ̂ , ŷ/σ̂ ) is the unit

vector along the ϕ̂ axis, û(1) = (û(1)
ŷ , û

(1)
ẑ ), and ∇̂ = (∂/∂ŷ, ∂/∂ẑ) is the gradient in the
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(ŷ, ẑ)-plane. Explicitly,

b =
2µ

a

[
−∂u(0)

x /∂ẑ

∂u(0)
x /∂ŷ

]
− G

a

[
−ẑ

ŷ

]
. (5.11)

The continuity equation requires

∇̂ · û(1) = 0. (5.12)

The last two equations describe a forced Stokes-flow problem over the tube cross-
section, where the body-force term depends on the velocity gradient of the zeroth-order
unidirectional flow.

A mixed finite-element method with six-node triangular elements was implemented
for solving the first-order flow over the tube cross-section (e.g. Pozrikidis 2005).
The velocity was approximated with a quadratic function, and the pressure was
approximated with a constant function over each element. The nodal values of the
velocity gradient of the unidirectional flow involved in the source term on the right-
hand side were computed by averaging the corresponding element values, yielding a
smooth gradient field, (figure 5b, d, f ). In the end, the nodal values of the pressure
were computed as averages of adjacent element values with the aid of an appropriate
node connectivity table. Sample results for the velocity vector field are shown in figure
6. It is reassuring to observe that the field displayed in figure 6(a) is similar in structure
to that displayed in figure 3(a), even though in this case the parameter β = π/3 is not
particularly small. The velocity vector field reveals a core of rotating fluid along the
tube centreline for both the circular and the square tubes. The vector field shown in
figure 6(c) illustrates the effectiveness of the helical fin in inducing a rotational motion
centred at the tip of the fin located at z = 0 and extending from y/a =0.5 to 1.

The second-order axial velocity satisfies the Poisson equation

∇̂2u(2)
x +

1

a2

∂2u(0)
x

∂ϕ̂2
+

1

µa

∂p(1)

∂ϕ̂
= 0, (5.13)

which can be restated in the computationally preferred form

∇̂2u(2)
x − G

µ

σ̂ 2

a2
− σ̂

a2

∂

∂σ̂

(
σ̂

∂u(0)
x

∂σ̂

)
+

1

µa
eϕ̂ · ∇p(1) = 0. (5.14)

The solution was found using the finite-element method discussed earlier in this
section for the zeroth-order axial flow. Results of typical calculations for a circular
tube with n = 3 sinusoidal corrugations, for a tube with a square cross-section, and
for a tube with an internal helical fin are shown in figure 7.

The flow rate through a plane normal to the x-axis is given by the perturbation
expansion

Q =
Gπa4

8µ

[
q (0) + β2q (2) + · · ·

]
, (5.15)

where the dimensionless coefficients q (0) and q (2) are evaluated by integrating the
corresponding axial velocities over the tube cross-section. For a square tube with side
length equal to 2a, computations with 32, 128 and 512 elements yielded, respectively,
q (0) = 1.4252, 1.4314 and 1.4319, and q (2) = 0.1955, 0.2174 and 0.2261. The value of q (0)

obtained with the most refined grid agrees to shown accuracy with the analytical series
solution (e.g. Pozrikidis 1997, p. 187). These data demonstrate that the convergence
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Figure 6. First-order velocity vector field in an axial plane for the three cross-sectional
geometries described in figure 5.

of q (0) or q (2) with respect to the number is, respectively, quadratic or linear. As
expected, q (2) is negative, and this confirms that twisting a tube reduces the flow rate
for a fixed pressure gradient.

The perturbation analysis of § 2 reveals that, for a circular tube of radius a with si-
nusoidal corrugations of small amplitude b, q (0) � 1−ε2(2n−3), where ε = b/a. Table 1
gives computed values of q (0) and q (2) for selected values of n and ε. The numbers
in parentheses, representing the predictions of the perturbation solution for small
amplitudes, are very close to those corresponding to the finite-element solution. Note
that q (0) for n= 1 is greater then unity, which means that the flow rate is greater than
that predicted by the Poiseuille law based on the mean tube radius, as discussed in
§ 4. In all cases, the value of q (2) is negative.

To establish the range of validity of the perturbation expansion with respect to the
pitch parameter β , in figure 8 we plot the dimensionless flow rate q ≡ 8πQ/(Gπa4)
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in figure 5.

n b/a q (0) q (2)

1 0.10 1.0100 (1.0100) −0.0185
1 0.20 1.0402 (1.0400) −0.0746
1 0.25 1.0630 (1.0625) −0.1175

2 0.10 0.9902 (0.9900) −0.0439
2 0.20 0.9629 (0.9600) −0.1620
2 0.25 0.9444 (0.9375) −0.2393

3 0.10 0.9708 (0.9700) −0.0676
3 0.20 0.8924 (0.8800) −0.2198
3 0.25 0.8414 (0.8125) −0.2994

Table 1. The flow rate coefficients q (0) and q (2) for a circular tube of radius a with wavy
corrugations of amplitude b. The entries in parentheses represent the predictions of the
perturbation solution for small-amplitude corrugation

against ka for several combinations of the reduced amplitude, b/a, and azimuthal
wavenumber, n. The solid lines represent the predictions of the large-pitch analysis
conducted in this section, and the dotted lines represent the predictions of the small-
amplitude analysis conducted in § 4. The comparison shows that the second-order
large-pitch analysis is accurate approximately when ka < 2 or L > π, that is, when
the pitch is longer than approximately three tube radii, and over-predicts the flow
rate for a given pressure gradient for shorter wavelengths.
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Figure 8. Flow in a circular tube of radius a with sinusoidal corrugations of amplitude b.
Graphs of the dimensionless flow rate, q for (a) n = 2, and (b) n = 3. The uppermost curves
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6. Discussion
We have formulated the problem of Stokes-flow through a twisted tube in non-

orthogonal helical coordinates, and presented a perturbation solution for a nearly
circular tube with sinusoidal corrugations and an asymptotic solution for a tube with
arbitrary cross-section and large pitched corrugations. The results in the former case
are consistent with those derived by Wang (2006) using an alternative formulation
in polar cylindrical coordinates. In addition, we have illustrated the structure of the
flow and visualized streamline patterns.

Ideally, the unsimplified Stokes-flow problem would be solved directly by numerical
methods. However, the complete formulation results in a coupled system of a two-
dimensional forced Stokes-flow problem defined over the tube cross-section and a
forced Poisson equation for the axial flow, whose solution defies standard procedures.
Fortunately, we have found that the second-order asymptotic solution for large pitch
is adequate for predicting the pressure drop under an extended range of conditions.
Accounting for the effects of inertia at arbitrary Reynolds numbers requires con-
sideration of an intimidating system of three nonlinearly coupled equations.

The present problem formulation in helical coordinates is also suitable for studying
flow in a single-screw extruder. In that case, the zeroth-order problem for infinite
pitch describes two-dimensional flow over a cross-sectional plane, while the first-
order problem describes axial flow. Numerical solutions of the full three-dimensional
problem have been presented in the applied literature using commercial finite-element
codes. The proper investigation of the extrusion problem taking into account the
helical symmetry was undertaken by Blyth & Pozrikidis (2006).

I am indebted to Haoxiang Luo for illuminating discussions. This research was
supported by a grant awarded by the National Science Foundation.
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